skip to main content


Search for: All records

Creators/Authors contains: "Lower, Sidney"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract One of the most common methods for inferring galaxy attenuation curves is via spectral energy distribution (SED) modeling, where the dust attenuation properties are modeled simultaneously with other galaxy physical properties. In this paper, we assess the ability of SED modeling to infer these dust attenuation curves from broadband photometry, and suggest a new flexible model that greatly improves the accuracy of attenuation curve derivations. To do this, we fit mock SEDs generated from the simba cosmological simulation with the prospector SED fitting code. We consider the impact of the commonly assumed uniform screen model and introduce a new nonuniform screen model parameterized by the fraction of unobscured stellar light. This nonuniform screen model allows for a nonzero fraction of stellar light to remain unattenuated, resulting in a more flexible attenuation curve shape by decoupling the shape of the UV attenuation curve from the optical attenuation curve. The ability to constrain the dust attenuation curve is significantly improved with the use of a nonuniform screen model, with the median offset in UV attenuation decreasing from −0.30 dex with a uniform screen model to −0.17 dex with the nonuniform screen model. With this increase in dust attenuation modeling accuracy, we also improve the star formation rates (SFRs) inferred with the nonuniform screen model, decreasing the SFR offset on average by 0.12 dex. We discuss the efficacy of this new model, focusing on caveats with modeling star-dust geometries and the constraining power of available SED observations. 
    more » « less
  2. Abstract Accurate models of the star formation histories (SFHs) of recently quenched galaxies can provide constraints on when and how galaxies shut down their star formation. The recent development of nonparametric SFH models promises the flexibility required to make these measurements. However, model and prior choices significantly affect derived SFHs, particularly for post-starburst galaxies (PSBs), which have sharp changes in their recent SFH. In this paper, we create mock PSBs, then use the Prospector SED fitting software to test how well four different SFH models recover key properties. We find that a two-component parametric model performs well for our simple mock galaxies, but is sensitive to model mismatches. The fixed- and flexible-bin nonparametric models included in Prospector are able to rapidly quench a major burst of star formation, but systematically underestimate the post-burst age by up to 200 Myr. We develop a custom SFH model that allows for additional flexibility in the recent SFH. Our flexible nonparametric model is able to constrain post-burst ages with no significant offset and just ∼90 Myr of scatter. Our results suggest that while standard nonparametric models are able to recover first-order quantities of the SFH (mass, SFR, average age), accurately recovering higher-order quantities (burst fraction, quenching time) requires careful consideration of model flexibility. These mock recovery tests are a critical part of future SFH studies. Finally, we show that our new, public SFH model is able to accurately recover the properties of mock star-forming and quiescent galaxies and is suitable for broader use in the SED fitting community. https://github.com/bd-j/prospector 
    more » « less
  3. null (Ed.)
  4. Abstract

    Observations and simulations have demonstrated that star formation in galaxies must be actively suppressed to prevent the formation of overly massive galaxies. Galactic outflows driven by stellar feedback or supermassive black hole accretion are often invoked to regulate the amount of cold molecular gas available for future star formation but may not be the only relevant quenching processes in all galaxies. We present the discovery of vast molecular tidal features extending up to 64 kpc outside of a massivez= 0.646 post-starburst galaxy that recently concluded its primary star-forming episode. The tidal tails contain (1.2 ± 0.1) × 1010Mof molecular gas, 47% ± 5% of the total cold gas reservoir of the system. Both the scale and magnitude of the molecular tidal features are unprecedented compared to all known nearby or high-redshift merging systems. We infer that the cold gas was stripped from the host galaxies during the merger, which is most likely responsible for triggering the initial burst phase and the subsequent suppression of star formation. While only a single example, this result shows that galaxy mergers can regulate the cold gas contents in distant galaxies by directly removing a large fraction of the molecular gas fuel, and plausibly suppress star formation directly, a qualitatively different physical mechanism than feedback-driven outflows.

     
    more » « less
  5. Abstract

    Over the past decade, rest-frame color–color diagrams have become popular tools for selecting quiescent galaxies at high redshift, breaking the color degeneracy between quiescent and dust-reddened star-forming galaxies. In this work, we study one such color–color selection tool—the rest-frameUVversusVJdiagram—by employing mock observations of cosmological galaxy formation simulations. In particular, we conduct numerical experiments assessing both trends in galaxy properties inUVJspace and the color–color evolution of massive galaxies as they quench at redshiftsz∼ 1–2. We find that our models broadly reproduce the observedUVJdiagram atz= 1–2, including (for the first time in a cosmological simulation) reproducing the population of extremely dust-reddened galaxies in the top right of theUVJdiagram. However, our models primarily populate this region with low-mass galaxies and do not produce as clear a bimodality between star-forming and quiescent galaxies as is seen in observations. The former issue is due to an excess of dust in low-mass galaxies and relatively gray attenuation curves in high-mass galaxies, while the latter is due to the overpopulation of the green valley insimba. When investigating the time evolution of galaxies on theUVJdiagram, we find that the quenching pathway on theUVJdiagram is independent of the quenching timescale, and instead dependent primarily on the average specific star formation rate in the 1 Gyr prior to the onset of quenching. Our results support the interpretation of different quenching pathways as corresponding to the divergent evolution of post-starburst and green valley galaxies.

     
    more » « less
  6. Abstract We describe the Studying Quenching in Intermediate- z Galaxies: Gas, angu L → ar momentum, and Evolution ( SQuIGG L ⃗ E ) survey of intermediate-redshift post-starburst galaxies. We leverage the large sky coverage of the Sloan Digital Sky Survey to select ∼ 1300 recently quenched galaxies at 0.5 < z ≤ 0.9 based on their unique spectral shapes. These bright, intermediate-redshift galaxies are ideal laboratories to study the physics responsible for the rapid quenching of star formation: they are distant enough to be useful analogs for high-redshift quenching galaxies, but low enough redshift that multiwavelength follow-up observations are feasible with modest telescope investments. We use the Prospector code to infer the stellar population properties and nonparametric star formation histories (SFHs) of all galaxies in the sample. We find that SQuIGG L ⃗ E galaxies are both very massive ( M * ∼ 10 11.25 M ⊙ ) and quenched, with inferred star formation rates ≲1 M ⊙ yr −1 , more than an order of magnitude below the star-forming main sequence. The best-fit SFHs confirm that these galaxies recently quenched a major burst of star formation: >75% of SQuIGG L ⃗ E galaxies formed at least a quarter of their total stellar mass in the recent burst, which ended just ∼200 Myr before observation. We find that SQuIGG L ⃗ E galaxies are on average younger and more burst-dominated than most other z ≲ 1 post-starburst galaxy samples. This large sample of bright post-starburst galaxies at intermediate redshift opens a wide range of studies into the quenching process. In particular, the full SQuIGG L ⃗ E survey will investigate the molecular gas reservoirs, morphologies, kinematics, resolved stellar populations, active galactic nucleus incidence, and infrared properties of this unique sample of galaxies in order to place definitive constraints on the quenching process. 
    more » « less
  7. null (Ed.)